Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The seasonal behavior of fluvial dissolved silica (DSi) concentrations, termedDSi regime, mediates the timing of DSi delivery to downstream waters and thus governs river biogeochemical function and aquatic community condition. Previous work identified five distinct DSi regimes across rivers spanning the Northern Hemisphere, with many rivers exhibiting multiple DSi regimes over time. Several potential drivers of DSi regime behavior have been identified at small scales, including climate, land cover, and lithology, and yet the large‐scale spatiotemporal controls on DSi regimes have not been identified. We evaluate the role of environmental variables on the behavior of DSi regimes in nearly 200 rivers across the Northern Hemisphere using random forest models. Our models aim to elucidate the controls that give rise to (a) average DSi regime behavior, (b) interannual variability in DSi regime behavior (i.e., Annual DSi regime), and (c) controls on DSi regime shape (i.e., minimum and maximum DSi concentrations). Average DSi regime behavior across the period of record was classified accurately 59% of the time, whereas Annual DSi regime behavior was classified accurately 80% of the time. Climate and primary productivity variables were important in predicting Average DSi regime behavior, whereas climate and hydrologic variables were important in predicting Annual DSi regime behavior. Median nitrogen and phosphorus concentrations were important drivers of minimum and maximum DSi concentrations, indicating that these macronutrients may be important for seasonal DSi drawdown and rebound. Our findings demonstrate that fluctuations in climate, hydrology, and nutrient availability of rivers shape the temporal availability of fluvial DSi.more » « less
-
Riverine silicon (Si) plays a vital role in governing primary production, water quality, and carbon sequestration. The Global Aggregation of Stream Silica (GlASS) database was constructed to assess changes in riverine Si concentrations and fluxes, their relationship to available nutrients, and to evaluate mechanisms driving these patterns. GlASS includes dissolved Si (DSi), dissolved inorganic nitrogen, and dissolved inorganic phosphorus concentrations at daily to quarterly time steps, daily discharge, and watershed characteristics for rivers with drainage areas ranging < 1 km2 to 3 million km2 and spanning eight climate zones, mainly in the northern hemisphere. Data range between years 1963 and 2023. GlASS uses publicly available datasets, ensuring transparency and reproducibility. Original data sources are cited, data quality assurance workflows are public, and input files to a common load estimator are provided.more » « less
-
These data include dissolved silicon concentration and yield from 60 rivers across North America, the Caribbean, and Antarctica from 1964-2021 and are associated with the publication “Long-term change in concentration and yield of riverine dissolved silicon from the poles to the tropics”. Data were compiled from multiple public sources including the Long-term Ecological Research Network, Great Arctic Rivers Observatory, Upper Mississippi River Restoration program, and the U.S. Geological Survey. Concentration and yield estimates were generated by the Weighted Regressions on Time, Discharge and Season model (WRTDS; Hirsch et al. 2010). The dataset includes six files: discrete dissolved silicon data and daily discharge data used as inputs to WRTDS; annual estimates of discharge, concentration, and yield for all rivers; monthly estimates of discharge, concentration, and yield for all rivers; long-term trends in concentration and yield; and a file containing coordinates and drainage area information for each site.more » « less
-
This dataset includes monthly dissolved silicon (DSi) concentration data from 198 rivers across the Northern Hemisphere. Concentration and discharge data were sourced from public and/or published datasets and the Weighted Regressions on Time, Discharge, and Season model (Hirsch et al. 2010) was used to estimate monthly concentrations and flow-normalized concentrations for all sites over their period of record. Sites span eight climate zones, ranged from 18 degrees N to 70 degrees N, and vary in drainage area from < 1 km2 to nearly 3 million km2. These monthly concentration data were then used to cluster sites into average (i.e., average of all years) and annual (i.e., each year individually) seasonal regimes using a time-series clustering approach. The annual regimes were used to quantify how often a site moved among regimes over its period of record (i.e., stability). Site characteristics including climate zone, discharge, and concentration-discharge behavior were explored as potential drivers of cluster membership and stability.more » « less
-
Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO 2 , the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions.more » « less
-
Abstract Riverine exports of silicon (Si) influence global carbon cycling through the growth of marine diatoms, which account for ∼25% of global primary production. Climate change will likely alter river Si exports in biome‐specific ways due to interacting shifts in chemical weathering rates, hydrologic connectivity, and metabolic processes in aquatic and terrestrial systems. Nonetheless, factors driving long‐term changes in Si exports remain unexplored at local, regional, and global scales. We evaluated how concentrations and yields of dissolved Si (DSi) changed over the last several decades of rapid climate warming using long‐term data sets from 60 rivers and streams spanning the globe (e.g., Antarctic, tropical, temperate, boreal, alpine, Arctic systems). We show that widespread changes in river DSi concentration and yield have occurred, with the most substantial shifts occurring in alpine and polar regions. The magnitude and direction of trends varied within and among biomes, were most strongly associated with differences in land cover, and were often independent of changes in river discharge. These findings indicate that there are likely diverse mechanisms driving change in river Si biogeochemistry that span the land‐water interface, which may include glacial melt, changes in terrestrial vegetation, and river productivity. Finally, trends were often stronger in months outside of the growing season, particularly in temperate and boreal systems, demonstrating a potentially important role of shifting seasonality for the flux of Si from rivers. Our results have implications for the timing and magnitude of silica processing in rivers and its delivery to global oceans.more » « less
An official website of the United States government
